博导介绍
博导介绍(按姓氏排序)
     
    张永清(Yongqing Zhang)


    【个人简介】

    张永清,博士,教授,博士生导师,发展规划处副处长,教学评估中心副主任。博士毕业于四川大学,美国加州大学圣地亚哥分校博士联合培养。研究兴趣包括人工智能与数据挖掘、气象环境与健康、气象医学、生物信息学等,主持完成国家自然科学基金面上项目、青年项目、四川省科技计划项目等10余项国家省部级科研项目,在国内外期刊和会议发表SCI论文60余篇,授权发明专利10余项。

    入选四川省“天府青城计划”青年人才。兼任中国计算机学会生物信息学专委执行委员、计算机应用专委执行委员、数据库专委会执行委员、中国自动化学会智能健康与生物信息专委会委员、中国人工智能学会生物信息学与人工生命专委会委员、中国生物工程学会计算生物学与生物信息学专委会委员、四川省科技青年联合会第七届理事、四川省人工智能学会理事、四川省生物信息学会理事。国家自然科学基金、四川省科技厅评审专家等。

    国家级一流本科课程《计算机组成原理》负责人,获第五届四川省教师教学创新大赛三等奖、第五届成都信息工程大学“优秀教师”奖、第八届成都信息工程大学“青年教师教学奖”、第二届教师教学创新大赛二等奖、成都信息工程大学教育教学成果奖二等奖等,指导学生获得国家省级大学生创新创业训练计划项目和学科竞赛20余项。

    【研究方向】

    1.气象人工智能应用研究

    2.气候-环境与健康影响

    3.气象多源信息融合研究

    4.智能健康与生物信息

    【在研和完成项目】

    1.国家自然科学基金面上项目,面向TFBS与非编码变异关联的深度学习体系结构研究(62272067),负责人

    2.国家自然科学基金青年科学基金项目,高通量数据和深度学习在基因调控层次网络构建中的应用研究(61702058),负责人

    3.国家自然科学基金面上项目,基于多组学融合与机器学习的缺血性心脏病微生物-代谢物关联机制研究(62572330),合作单位负责人

    4.四川省自然科学基金面上项目,多模态数据融合的医药智能辅助决策方法研究(2026NSFSC0419),负责人

    5.四川省自然科学基金面上项目,基于多组学数据的转录因子与非编码变异关系的计算分析方法研究(2023NSFSC0499),负责人

    6.中国气象局气候变化专题项目,气候变化对中国人群健康风险区划的影响研究,参与

    【代表性研究成果】

    1.Yongqing Zhang, Tianhao Li, Yuhang Liu, Hong Luo, Yugui Xu, Zixuan Wang, Quan Zou*, Supervised pre-training for feature extraction in cell type annotation of single-cell multi-omics data, Applied Soft Computing, Volume 183, 2025, 113585.

    2.Junming Zhang, Shuwen Xiong, Yugui Xu, Yongqing Zhang*, Prediction of cancer drug response based on heterogeneous graph neural networks and multi-omics data, Neural Networks, Volume 193, 2026, 108001.

    3.Gao, Dongrui and Liu, Shihong and Gao, Yingxian and Li, Pengrui and Zhang, Haokai and Wang, Manqing and Shen, Yan and Wang, Lutao and Zhang, Yongqing*, A Comprehensive Adaptive Interpretable Takagi-Sugeuo-Kang Fuzzy Classifier for Fatigue Driving Detection, IEEE Transactions on Fuzzy Systems, vol. 33, no. 1, pp. 108-119, Jan. 2025

    4.Liqi Lin, Pengrui Li, Qinghua Wang, Binnan Bai, Ruifang Cui, Zhenxia Yu, Dongrui Gao, Yongqing Zhang*, An EEG-based cross-subject interpretable CNN for game player expertise level classification, Expert Systems with Applications, Volume 237, Part C, 1 March 2024, 121658.

    5.Dongrui Gao, Wen Yang, Pengrui Li, Shihong Liu, Tiejun Liu, Manqing Wang, Yongqing Zhang*, A multiscale feature fusion network based on attention mechanism for motor imagery EEG decoding, Applied Soft Computing, Volume 151, January 2024, 111129, ISSN 1568-4946.

    6.Tianhao Li, Zixuan Wang, Yuhang Liu, Sihan He, Quan Zou, Yongqing Zhang*, An overview of computational methods in single-cell transcriptomic cell type annotation, Briefings in Bioinformatics, Volume 26, Issue 3, May 2025, bbaf207.

    7.Yongqing Zhang, Hao Yuan, Yuhang Liu, Shuwen Xiong, Zhigan Zhou, Yugui Xu, Xinyu Mao, Meiqin Gong*, MMGCSyn: Explainable synergistic drug combination prediction based on multimodal fusion, Future Generation Computer Systems, Volume 168, 2025, 107784.

    8.Gao, Dongrui and Li, Pengrui and Wang, Manqing and Liang, Yujie and Liu, Shihong and Zhou, Jiliu and Wang Lutao, Yongqing Zhang*, CSF-GTNet: A Novel Multi-Dimensional Feature Fusion Network Based on Convnext-GeLU- BiLSTM for EEG-Signals-Enabled Fatigue Driving Detection, IEEE Journal of Biomedical and Health Informatics, vol. 28, no. 5, pp. 2558-2568, May 2024.

    9.Dongrui Gao, Kejie Wang, Manqing Wang, Jiliu Zhou and Yongqing Zhang*, SFT-Net: A Network for Detecting Fatigue From EEG Signals by Combining 4D Feature Flow and Attention Mechanism, IEEE Journal of Biomedical and Health Informatics, vol. 28, no. 8, pp. 4444-4455, August 2024.

    10.Yuhang Liu, Zixuan Wang, Hao Yuan, Guiquan Zhu, Yongqing Zhang*, HEAP: a task adaptive-based explainable deep learning framework for enhancer activity prediction, Briefings in Bioinformatics, Volume 24, Issue 5, September 2023, bbad286.

    11.Yongqing Zhang, Zhigan Zhou, Maocheng Wang, Xinyu Mao, Zixuan Wang and Quan Zou*, A Multi-Omics Data Integration Framework for Gene Regulatory Network Inference Based on Contrastive Learning, IEEE Transactions on Computational Biology and Bioinformatics, vol. 22, no. 3, pp. 1095-1106, 205

    12.Yongqing Zhang, Zixuan Wang, Yuanqi Zeng, Jiliu Zhou, Quan Zou*, High-resolution transcription factor binding sites prediction improved performance and interpretability by deep learning method, Briefings in Bioinformatics, Volume 22, Issue 6, 2021, bbab273

    【联系方式】

    电子邮箱:zhangy@cuit.edu.cn

    办公电话:028-85967601

    Q Q号码:120202816

    关闭